A NOTE ON FRAGMENTS OF INFINITE GRAPHS

by

H. A. JUNG

Technische Universität Berlin Fachbereich Mathematik, 1000 Berlin 12

Received 9 September 1980 Dedicated to Prof. K. Wagner on his 70th birthday

Results involving automorphisms and fragments of infinite graphs are proved. In particular for a given fragment C and a vertex-transitive subgroup G of the automorphism group of a connected graph there exists $\sigma \in G$ such that $\sigma[C] \subset C$. This proves the countable case of a conjecture of L. Babai and M. E. Watkins concerning graphs allowing a vertex-transitive torsion group action.

1. Introduction

Given a graph X, let \varkappa_{∞} denote the least cardinality of a vertex set which separates two infinite subsets of the vertex set V(X) of X. In this note graphs X with finite \varkappa_{∞} are considered. If S separates the infinite sets C_1 , C_2 where $|S| = \varkappa_{\infty}$ and $V(X) = C_1 \cup S \cup C_2$, then C_1 , C_2 are called *fragments* of X.

L. Babai and M. E. Watkins [1] showed that for locally finite graphs X with $0 < \varkappa_{\infty} < \infty$ any torsion subgroup of the automorphism group Aut X of X has infinitely many orbits with respect to the action on V(X). They also conjectured that graphs Y with prescribed connectivity $\varkappa > 0$ and allowing a vertex-transitive torsion group of automorphisms cannot have arbitrarily large valence. Note that in the case $\varkappa < \infty$ either $\varkappa_{\infty} < \infty$ or some $v \in V(Y)$ has finite valence.

In fact, the following is a consequence of Theorem 1 below.

Corollary. If Y allows a vertex-transitive torsion group of automorphisms and $0 < \varkappa < \infty$, then Y is locally finite.

The boundary ∂C of $C \subseteq V(X)$ is the set of vertices in V(X) - C which are joined to some vertex in C.

Theorem 1. Let $\varkappa_{\infty} < \infty$ and let G be a vertex-transitive subgroup of Aut X. Then for each fragment C of X there exist $\sigma \in G$ such that $\sigma[C \cup \partial C] \subseteq C$.

Obviously an automorphism σ as described in Theorem 1 has infinite order provided X is connected.

286 H-a. Jung

2. Rigid neighbours of fragments

Using the abbreviation $\bar{S} = V(X) - (S \cup \partial S)$ one may define (cf. [3]):

$$\varkappa = \varkappa(X) = \min(|\partial S|: S \text{ and } \bar{S} \text{ non-empty})$$

and $\varkappa_{\infty} = \varkappa_{\infty}(X) = \min \{ |\partial S| : S \text{ and } \overline{S} \text{ infinite} \}.$

We call v a rigid neighbour of the fragment C if $v \in \partial D$ for all fragments $D \subseteq C$. The set of rigid neighbours of C is denoted by $\partial^* C$.

Lemma 2.1. Let $\kappa_{\infty} < \infty$ and let C be a fragment of X. If D is a fragment and $D \subseteq C$ then $\partial^* C \subseteq \partial^* D$. If $\partial^* D' = \partial^* C$ for all fragments $D' \subseteq C$ then $C \cap \partial^* D = \emptyset$ for all fragments D of X.

Proof. The first assertion is an immediate consequence of the definitions. Suppose $\partial^* D = \partial^* C$ for each fragment D of X such that $D \subseteq C$.

Let D be a fragment of X. By Corollary 2A in [3], $D \cap C$ or $D \cap \overline{C}$ is a fragment of X (with respect to \varkappa_{∞}). Hence

$$\partial^* D \subseteq \partial^* (D \cap C) = \partial^* C$$

or

$$\partial^* D \subseteq \partial (D \cap \overline{C}) \subseteq \overline{C} \cup \partial D = \overline{C} \cup \partial C. \quad \blacksquare$$

As usual d(s, t) denotes the number of edges on a shortest path joining the vertices s, t; further

diam $S = \max (d(s_1, s_2): s_1, s_2 \in S)$

and

$$d(S,T) = \min (d(s,t): s \in S, t \in T)$$

for finite sets S, $T \subseteq V(X)$.

Lemma 2.2. Let $0 < \varkappa_{\infty} < \infty$ and let C be a fragment of X such that $\partial^* D = \emptyset$ for all fragments $D \subseteq C$. Then for each positive integer n there is a fragment C_1 of X such that $C_1 \cup \partial C_1 \subseteq C$ and $d(\partial C_1, \partial C) \ge n$.

Proof. Let $\partial C = \{v_1, v_2, ..., v_k\}$. One first constructs fragments $C \supseteq D_1 \supseteq D_2 \supseteq ... \supseteq D_k$ such that $v_i \notin \partial D_i$ (i = 1, 2, ..., k). Setting $C = D_0$, assume D_i has been constructed and $0 \le i < k$. Since $v_{i+1} \notin \partial^* D_i$ one can find a fragment D_{i+1} such that $D_{i+1} \subseteq D_i$ and $v_{i+1} \notin \partial D_{i+1}$. Clearly $D_{i+1} \cup \partial D_{i+1} \subseteq D_i \cup \partial D_i \subseteq C \cup \partial C$. Hence $D_k \cup \partial D_k \subseteq C$.

Using the construction of the previous paragraph of $C(i) \subseteq C(i) \subseteq C(i-1)$.

Using the construction of the previous paragraph one can construct fragments $C = C^{(0)} \supseteq C^{(1)} = D_k \supseteq C^{(2)} \supseteq ... \supseteq C^{(n)}$ such that $C^{(i)} \cup \partial C^{(i)} \subseteq C^{(i-1)}$ for $0 < i \le n$. Clearly $d(\partial C^{(n)}, \partial C) \ge n$.

3. Automorphisms and Fragments

We call a fragment C of X and $\sigma \in Aut X$ compatible if $\sigma[\partial C] \subseteq C$.

Lemma 3.1. Let $0 < \varkappa_{\infty} < \infty$ and let C, σ be compatible. Then either

- (i) $\overline{C} \cup \partial C \subseteq \sigma[\overline{C}]$ and $\sigma[C \cup \partial C] \subseteq C$ or
- (ii) $\overline{C} \cup \partial C \subseteq \sigma[C]$ and $\sigma[\overline{C} \cup \partial C] \subseteq C$.

Proof. Since $\overline{C} \cup \partial C$ induces a connected subgraph of $X - \sigma[\partial C]$ one has $\overline{C} \cup \partial C \subseteq \sigma[\overline{C}]$ or $\overline{C} \cup \partial C \subseteq \sigma[C]$; also, by complementation, $\sigma[C \cup \partial C] \subseteq C$ or $\sigma[\overline{C} \cup \partial C] \subseteq C$ respectively.

Lemma 3.2. Let $0 < \varkappa_{\infty} < \infty$, and let C be a fragment of X. Further let G be a vertex-transitive group of automorphisms of X. Then $\partial^* C = \emptyset$, and there exists $\sigma \in G$ such that C, σ are compatible.

Proof. One can find a fragment $C_1 \subseteq C$ such that $\partial^* D = \partial^* C_1$ for all fragments $D \subseteq C_1$. For $x \in \partial^* C_1$ one could pick $\sigma \in G$ such that $\sigma(x) \in C_1$, and one would have $\sigma(x) \in \sigma[\partial^* C_1] = \partial^* \sigma[C_1]$ contrary to Lemma 2.1. Hence $\varnothing = \partial^* C_1 \supseteq \partial^* C$. By Lemma 2.2 there exists a fragment $C_2 \subseteq C$ such that $C_2 \cup \partial C_2 \subseteq C$ and $d(\partial C_2, \partial C) \ge \text{diam } \partial C$. For any $\sigma \in \text{Aut } X$ such that $\sigma[\partial C] \cap C_2 \ne \varnothing$ one has $\sigma[\partial C] \subseteq C$.

Theorem 1 is an immediate consequence of Lemma 3.2 and the following result.

Proposition 3.3. Let $0 < \varkappa_{\infty} < \infty$ and let C be a fragment of X. If C, σ are compatible and \overline{C} , τ are compatible then $\varphi[C \cup \partial C] \subseteq C$ for some $\varphi \in \{\sigma, \tau^{-1}, \sigma^{-1}\tau^{-1}\}$.

Proof. According to Lemma 3.1 one may assume $\bar{C} \cup \partial C \subseteq \sigma[C]$ and $\sigma[\bar{C} \cup \partial C] \subseteq C$. Also, by Lemma 3.1, either $C \cup \partial C \subseteq \tau[C]$ or $C \cup \partial C \subseteq \tau[\bar{C}]$. In the latter case $\tau^{-1}[C \cup \partial C] \subseteq \bar{C} \subseteq \sigma[C]$.

It must be pointed out that the proof of theorem 1 — with the exception of the arguments involving rigid neighbours — is very similar to the proof of Theorem 2 in [1].

R. Halin [2] called $\sigma \in \operatorname{Aut} X$ of type 1 if $\sigma(F) = F$ for some finite non-empty $F \subseteq V(X)$. Clearly, an automorphism σ as described in Theorem 1 is not of type 1. Theorem 2 and Theorem 3 deal with automorphisms of type 1.

Theorem 2. Let $\kappa_{\infty} < \infty$ and $\sigma^{n}[C] = C$ for some fragment C of X and some positive integer n. Then there exists some fragment $D \subseteq C$ such that $\sigma^{n}[D] = D$ and the sets D, $\sigma[D]$, ..., $\sigma^{n-1}[D]$, $\partial D \cup \sigma[\partial D] \cup ... \cup \sigma^{n-1}[\partial D]$ are pairwise disjoint or equal.

Proof. Put $C^{(0)} = C$ and $C^{(1)} = \overline{C}$ and construct a sequence $e_0, e_1, ..., e_{n-1}$ in $\{0, 1\}$ such that $C^{(e_0)} \cap \sigma[C^{(e_l)}] \cap ... \cap \sigma^i[C^{(e_l)}] = D_i$ is a fragment of X (i = 0, 1, ..., n-1). If D_i is constructed and i < n-1 then, by Corollary 2A in [3], the set $D_i \cap \sigma^{i+1}[C]$ or $D_i \cap \overline{\sigma^{i+1}[C]} = D_i \cap \sigma^{i+1}[\overline{C}]$ is a fragment. Therefore one can pick $e_{i+1} \in \{0, 1\}$ such that $D_{i+1} = D_i \cap \sigma^{i+1}[C^{(e_{i+1})}]$ is a fragment. It will be shown that $D = D_{n-1}$ has the desired properties. Clearly $\sigma^n[D] = D$ since $\sigma^n[\overline{C}] = \overline{C}$. For $j \in \mathbb{Z}$ the set $\sigma^j[D]$ has the form $C^{(f_0)} \cap \sigma[C^{(f_1)}] \cap ... \cap \sigma^{n-1}[C^{(f_{n-1})}]$ where $f_1, f_2, ..., f_{n-1} \in \{0, 1\}$. A vertex $x \in \sigma^j[D] \cap D$ belongs to

$$\sigma^{i}[C^{(f_{i})}] \cap \sigma^{i}[C^{(e_{i})}]$$
 for $0 \le i \le n-1$.

If such an x exists, one has $e_i = f_i$ for all i. Hence $\sigma^j[D] = D$. Therefore $\sigma^j[D] \cap \cap \sigma^k[D] \neq \emptyset$ implies $\sigma^j[D] = \sigma^k[D]$.

Since $\partial D \subseteq \partial C \cup \sigma[\partial C] \cup ... \cup \sigma^{n-1}[\partial C]$, any vertex y in $\partial D \cap \sigma^{j}[D]$ belongs to some $\sigma^{k}[\partial C] \cap \sigma^{j}[D]$ where $0 \le k \le n-1$. But $\sigma^{j}[D] \subseteq \sigma^{k}[C^{(f_{k})}]$, and hence no such y exists. Therefore $\sigma^{e}[\partial D] \cap \sigma^{j}[D] = \emptyset$ for all e and f.

The following related result is concerned with the locally finite case.

Theorem 3. Let $0 < \varkappa_{\infty} < \infty$ and let $\sigma \in \text{Aut } X$ be of type 1. Then for each fragment C of X there exist an integer n > 0 and a fragment $D \subseteq C$ such that $\sigma^n[D] = D$ and any two members of the sequence D, $\sigma[D]$, ..., $\sigma^{n-1}[D]$ and $\partial D \cup \sigma[\partial D] \cup ... \cup \sigma^{n-1}[\partial D]$ are disjoint.

Proof. By definition, $\sigma[F] = F$ for some finite $F \subseteq V(X)$, $F \neq \emptyset$. The set $S = \bigcup_{i \in \mathbb{Z}} \sigma^i[\partial C]$ also is finite since $d(x, F) \leq \max (d(y, F): y \in \partial C)$ for all $x \in S$. Clearly $\sigma[S] = S$. There are only finitely many fragments whose boundary is contained in S and hence one can find a fragment D which is minimal subject to the conditions $D \subseteq C$ and $\partial D \subseteq S$. It will be shown that such a D has the desired property.

Let $\sigma^i[D \cup \partial D] \cap D \neq \emptyset$. Then $D \cap \sigma^i[D]$ or $D \cap \hat{\sigma^i}[\overline{D}]$ is a fragment D_1 and $\partial D_1 \subseteq \partial D \cup \sigma^i[\partial D] \subseteq S$. Hence $D_1 = D$ which implies $\sigma^i[D] \supseteq D$. Therefore $\sigma^i[D] = D$. In general, $\sigma^i[D \cup \partial D] \cap \sigma^j[D] \neq \emptyset$ implies $\sigma^{i-j}[D \cup \partial D] \cap D \neq \emptyset$ and hence $\sigma^{i-j}[D] = D$ by the preceding argument. This shows that the sequence D, $\sigma[D]$, ... is periodic. Moreover the claim holds with the minimum positive integer n such that $\sigma^n[D] = D$.

References

- [1] L. Babai and M. E. Watkins, Connectivity of infinite graphs having a transitive torsion group action, *Arch. Math.* 34 (1980), 90—96.
- [2] R. Halin, Automorphisms and endomorphisms of infinite locally finite graphs, Abh. Math. Sem. Univ. Hamburg, 39 (1973), 251-283.
- [3] H. A. JUNG and M. E. WATKINS, On the connectivities of finite and infinite graphs, Mh. Math., 83 (1977), 121—131.